Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Blood ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643512

RESUMEN

Plasma cells (PC) are highly specialized cells representing the end stage of B cell differentiation. We have shown that PC differentiation can be reproduced in vitro using elaborate culture systems. The molecular changes occurring during PC differentiation are recapitulated in this in vitro differentiation model. However, a major challenge exists to decipher the spatiotemporal epigenetic and transcriptional programs that drives the early stages of PC differentiation. We combined single cell (sc) RNA-seq and single cell ATAC-seq to decipher the trajectories involved in PC differentiation. ScRNA-seq experiments revealed a strong heterogeneity of the preplasmablastic and plasmablastic stages. Among genes that were commonly identified using scATAC-seq and scRNA-seq, we identified several transcription factors with significant stage specific potential importance in PC differentiation. Interestingly, differentially accessible peaks characterizing the preplasmablastic stage were enriched in motifs of BATF3, FOS and BATF, belonging to the AP-1 transcription factor family, that may represent key transcriptional nodes involved in PCD. Integration of transcriptomic and epigenetic data at the single cell level revealed that a population of preplasmablasts already undergone epigenetic remodeling related to PC profile together with UPR activation and are committed to differentiate in PC. These results and the supporting data generated with our in vitro PC differentiation model provide a unique resource for the identification of molecular circuits that are crucial for early and mature plasma cell maturation and biological functions. These data thus provide critical insights into epigenetic- and transcriptional-mediated reprogramming events that sustain PC differentiation.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38662292

RESUMEN

In this study, the effect of the cell density of monolithic catalysts was investigated and further mathematically modeled on cordierite supports used in CO2 methanation. Commercial cordierite monoliths with 200, 400, and 500 cpsi cell densities were coated by immersion into an ethanolic suspension of Ni/CeO2 active phase. SEM-EDS analysis confirmed that, owing to the low porosity of cordierite (surface area < 1 m2 g-1), the Ni/CeO2 diffusion into the walls was limited, especially in the case of low and intermediate cell density monoliths; thus, active phase was predominantly loaded onto the channels' external surface. Nevertheless, despite the larger exposed surface area in the monolith with high cell density, which would allow for better distribution and accessibility of Ni/CeO2, its higher macro-pore volume resulted in some introduction of the active phase into the walls. As a result, the catalytic evaluation showed that it was more influenced by increments in volumetric flow rates. The low cell density monolith displayed diffusional control at flow rates below 500 mL min-1. In contrast, intermediate and high cell density monoliths presented this behavior up to 300 mL min-1. These findings suggest that the interaction reactants-catalyst is considerably more affected by a forced non-uniform flow when increasing the injection rate. This condition reduced the transport of reactants and products within the catalyst channels and, in turn, increased the minimum temperature required for the reaction. Moreover, a slight diminution of selectivity to CH4 was observed and ascribed to the possible formation of hot spots that activate the reverse water-gas shift reaction. Finally, a mathematical model based on fundamental momentum and mass transfer equations coupled with the kinetics of CO2 methanation was successfully derived and solved to analyze the fluid dynamics of the monolithic support. The results showed a radial profile with maximum fluid velocity located at the center of the channel. A reactive zone close to the inlet was obtained, and maximum methane production (4.5 mol m-3) throughout the monolith was attained at 350 °C. Then, linear streamlines of the chemical species were developed along the channel.

3.
Front Sports Act Living ; 6: 1375814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628574

RESUMEN

This study aimed to explore the views of judo coaches on their perceived knowledge (PK) and needs for education (NE) for training older practitioners. In total, 470 international (Europe = 48%, Americas = 22%, Africa = 23%, Asia = 5% and Oceania = 2%) judo coaches (IJF: level 1 = 55,3%, level 2 = 33%; judo black belt: 3,4 ± 1,7 dan; F = 15%; university education: 68% >BA) responded an online survey encompassing demographic information and 35 items relevant to training older adults (Aging process; Safety and First Aid; Organization & Environment; Physiology and Fitness; Psychology & Mental Health; Teaching & Training) to be rated on a 7-point Likert scale for PK and NE. Non parametric statistics (p > 0.05) was applied to ascertain differences and relationships between PK and NE, respectively. A bivariate go-zone plot was used to highlight items with the lowest PK and the highest NE mean values. The coaches reported high PK (4.5 ± 0.3 pt) and NE (4.7 ± 0.1 pt) values, with significant higher PK values emerging for high education levels and judo experience. In considering their unique needs and special role, the judo coaches presented valuable insights to develop a sustainable educational curriculum tailored to train older judo practitioners.

4.
Curr Biol ; 34(8): 1750-1754.e4, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38521063

RESUMEN

Using words to refer to objects in the environment is a core feature of the human language faculty. Referential understanding assumes the formation of mental representations of these words.1,2 Such understanding of object words has not yet been demonstrated as a general capacity in any non-human species,3 despite multiple behavior-based case reports.4,5,6,7,8,9,10 In human event-related potential (ERP) studies, object word knowledge is typically tested using the semantic violation paradigm, where words are presented either with their referent (match) or another object (mismatch).11,12 Such mismatch elicits an N400 effect, a well-established neural correlate of semantic processing.12,13 Reports of preverbal infant N400 evoked by semantic violations14 assert the use of this paradigm to probe mental representations of object words in nonverbal populations. Here, measuring dogs' (Canis familiaris) ERPs to objects primed with matching or mismatching object words, we found a mismatch effect at a frontal electrode, with a latency (206-606 ms) comparable to the human N400. A greater difference for words that dogs knew better, according to owner reports, further supported a semantic interpretation of this effect. Semantic expectations emerged irrespective of vocabulary size, demonstrating the prevalence of referential understanding in dogs. These results provide the first neural evidence for object word knowledge in a non-human animal. VIDEO ABSTRACT.


Asunto(s)
Potenciales Evocados , Semántica , Animales , Perros/fisiología , Masculino , Femenino , Potenciales Evocados/fisiología , Comprensión/fisiología , Electroencefalografía , Humanos
5.
P R Health Sci J ; 43(1): 54-56, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38512762

RESUMEN

We report on the first case of congenital Zika syndrome to be identified during the COVID-19 pandemic in Puerto Rico. The Zika virus (ZIKV) infection was first seen in Puerto Rico in December 2015. It is a flavivirus with vertical transmission, spreading from infected mothers to their fetuses and having a broad spectrum of clinical manifestations, of which microcephaly is the most worrisome. In Puerto Rico, routine ZIKV screening during pregnancy was implemented in October 2016. However, this practice has become less frequent over time. Nevertheless, the transmission of ZIKV continues, so it is important to ensure routine ZIKV screening in endemic regions, such as Puerto Rico.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Embarazo , Lactante , Femenino , Humanos , Recién Nacido , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/prevención & control , Pandemias , COVID-19/epidemiología , Recien Nacido Prematuro , Prueba de COVID-19
6.
Environ Res ; 250: 118559, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38412912

RESUMEN

Tequila production in Mexico generates large quantities of agave bagasse (AB), a waste that could be used more efficiently. AB has a high cellulose, hemicellulose, and lignin content, which allows its use as a precursor for synthesizing carbonaceous materials. In the present work, the synthesis of activated carbon impregnated with Fe2+ (AG-Fe-II) and Fe3+ (AG-Fe-III) was carried out and evaluated in a hybrid adsorption-AOP (advanced oxidation process) methodology for sulfamethazine removal (SMT). The materials were characterized before and after the process to determine their morphological, textural, and physicochemical properties. Subsequently, the effect of the main operational variables (pH, initial SMT concentration, mass, and activator dosage) on the hybrid adsorption-degradation process was studied. The Fenton-like reaction was selected as the AOP for the degradation step, and potassium persulfate (K2S2O8) was used as an activating agent. The main iron crystallographic phases in AG-Fe-II were FeS, with a uniform distribution of iron particles over the material's surface. The main crystallographic phase for AG-Fe-III was Fe3O4. The hybrid process achieved 61% and 78% removal efficiency using AG-Fe-II and AG-Fe-III samples, respectively. The pH and initial SMT concentration were the most critical factors for removing SMT from an aqueous phase. Finally, the material was successfully tested in repeated adsorption-degradation cycles.

7.
Environ Sci Pollut Res Int ; 31(11): 16453-16472, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38321273

RESUMEN

The synthesis and characterization of a hydrochar/CeO2 composite along with its evaluation in methylene blue degradation under visible light are presented. The methodology consisted of a single-pass hydrothermal method, having as synthesis conditions 9 h of reaction time, 210 °C, autogenous pressure, and a biomass/CeO2 ratio of 100:1. The composite characterization revealed good dispersion of CeO2 in the carbonaceous matrix and significant synergy in the composite activation using visible irradiation. The photodegradation experiments showed an efficiency of 98% for white LED light, 91% for UV light, 96% for solar irradiation, and 85% for blue LED light using as conditions pH 7.0, 50 mg of composite, 50 mL of solution, 10 mg/L of dye initial concentration, and 120 min of contact time. Meanwhile, the reusability experiments evidenced a reuse capacity of up to five times with a constant photodegradation efficiency (99%); moreover, it was determined that the presence of electrolytes at pH below 7.0 during degradation negatively affected methylene blue degradation. Finally, the results of this work demonstrate that the hydrochar/CeO2 composite can be synthesized by a green method and used for the efficient treatment of water contaminated with methylene blue.


Asunto(s)
Luz , Azul de Metileno , Azul de Metileno/química , Rayos Ultravioleta , Fotólisis , 60440
8.
Environ Res ; 246: 118162, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218517

RESUMEN

This study investigated the application of adsorption with activated carbons (ACs) and photodegradation to reduce the concentration of triclosan (TCS) in aqueous solutions. Concerning adsorption, ACs (Darco, Norit, and F400) were characterised and batch experiments were performed to elucidate the effect of pH on equilibrium. The results showed that at pH = 7, the maximum adsorption capacity of TCS onto the ACs was 18.5 mg g-1 for Darco, 16.0 mg g-1 for Norit, and 15.5 mg g-1 for F400. The diffusional kinetic model allowed an adequate interpretation of the experimental data. The effective diffusivity varied and increased with the amount of TCS adsorbed, from 1.06 to 1.68 × 10-8 cm2 s-1. In the case of photodegradation, it was possible to ensure that the triclosan molecule was sensitive to UV light of 254 nm because the removal was over 80 % using UV light. The removal of TCS increased in the presence of sulfate radicals. It was possible to identify 2,4-dichlorophenol as one of the photolytic degradation products of triclosan, which does not represent an environmental hazard at low concentrations of triclosan in water. These results confirm that the use of AC Darco, Norit, and F400 and that photodegradation processes with UV light and persulfate radicals are effective in removing TCS from water, reaching concentration levels that do not constitute a risk to human health or environmental hazard. Both methods effectively eliminate pollutants with relatively easy techniques to implement.


Asunto(s)
Triclosán , Contaminantes Químicos del Agua , Humanos , Triclosán/química , Carbón Orgánico/química , Adsorción , Fotólisis , Agua , Contaminantes Químicos del Agua/análisis
9.
Chemosphere ; 351: 141216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224748

RESUMEN

Sulfamethoxazole and metronidazole are emerging pollutants commonly found in surface water and wastewater. These compounds have a significant environmental impact, being necessary in the design of technologies for their removal. Recently, the advanced oxidation process has been proven successful in the elimination of this kind of compounds. In this sense, the present work discusses the application of UV/H2O2 and ozonation for the degradation of both molecules in single and binary systems. Experimental kinetic data from O3 and UV/H2O2 process were adequately described by a first and second kinetic model, respectively. From the ANOVA analysis, it was determined that the most statistically significant variables were the initial concentration of the drugs (0.03 mmol L-1) and the pH = 8 for UV/H2O2 system, and only the pH (optimal value of 6) was significant for degradation with O3. Results showed that both molecules were eliminated with high degradation efficiencies (88-94% for UV/H2O2 and 79-98% for O3) in short reaction times (around 30-90 min). The modeling was performed using a quadratic regression model through response surface methodology representing adequately 90 % of the experimental data. On the other hand, an artificial neural network was used to evaluate a non-linear multi-variable system, a 98% of fit between the model and experimental data was obtained. The identification of degradation byproducts was performed by high-performance liquid chromatography coupled to a time mass detector. After each process, at least four to five stable byproducts were found in the treated water, reducing the mineralization percentage to 20% for both molecules.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Inteligencia Artificial , Peróxido de Hidrógeno/química , Calidad del Agua , Rayos Ultravioleta , Oxidación-Reducción , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Ozono/química
10.
PLoS One ; 19(1): e0292011, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170684

RESUMEN

In preference reversals, subjects express different rankings over a set of alternatives depending on how preferences are elicited. In classical reversal tasks, for instance, subjects often select a safe bet over a risky one when given a choice between the two in a pair, but then assign a higher monetary evaluation to the risky bet. Motivated by a rich literature on context-dependent preferences, we conjecture that comparisons across bets in a pair can influence both Choice and Evaluation. Yet deciders are less likely to mentally compare the bets in the latter case, as bets are typically evaluated in isolation. This asymmetry between Choice and Evaluation is, we surmise, one cause of the reversals. If we further assume that memory decay affects mental comparisons in Evaluation, the account predicts order and timing effects on the reversal probability. We run several treatments designed to facilitate or hinder the retrieval from memory of the alternative bet during evaluation of a bet. However, the reversal rate does not vary across treatments in the predicted direction, and we find no systematic order or timing effects. We conclude that reversals are not influenced by the ease with which subjects recall the alternative bet during the evaluations, which suggests in turn that a relatively smaller frequency of comparisons across bets during the (typically isolated) evaluations is not a significant cause of reversals.


Asunto(s)
Conducta de Elección , Juego de Azar , Humanos , Probabilidad , Motivación , Recuerdo Mental
11.
Appl Microbiol Biotechnol ; 108(1): 106, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38217255

RESUMEN

Glioblastoma is one of the most lethal tumors, displaying striking cellular heterogeneity and drug resistance. The prognosis of patients suffering from glioblastoma after 5 years is only 5%. In the present work, capsaicin analogues bearing modifications on the acyl chain with long-chain fatty acids showed promising anti-tumoral activity by its cytotoxicity on U-87 and U-138 glioblastoma multiforme cells. The capsaicin analogues were enzymatically synthetized with cross-linked enzyme aggregates of lipase B from Candida antarctica (CALB). The catalytic performance of recombinant CALB-CLEAs was compared to their immobilized form on a hydrophobic support. After 72 h of reaction, the synthesis of capsaicin analogues from linoleic acid, docosahexaenoic acid, and punicic acid achieved a maximum conversion of 69.7, 8.3 and 30.3% with CALB-CLEAs, respectively. Similar values were obtained with commercial CALB, with conversion yields of 58.3, 24.2 and 22% for capsaicin analogues from linoleic acid, DHA and punicic acid, respectively. Olvanil and dohevanil had a significant cytotoxic effect on both U-87 and U-138 glioblastoma cells. Irrespective of the immobilization form, CALB is an efficient biocatalyst for the synthesis of anti-tumoral capsaicin derivatives. KEY POINTS: • This is the first report concerning the enzymatic synthesis of capsaicin analogues from docosahexaenoic acid and punicic acid with CALB-CLEAs. • The viability U-87 and U-138 glioblastoma cells was significantly affected after incubation with olvanil and dohevanil. • Capsaicin analogues from fatty acids obtained by CALB-CLEAs are promising candidates for therapeutic use as cytotoxic agents in glioblastoma cancer cells.


Asunto(s)
Capsaicina , Glioblastoma , Humanos , Capsaicina/farmacología , Enzimas Inmovilizadas/metabolismo , Glioblastoma/tratamiento farmacológico , Proteínas Fúngicas/metabolismo
12.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257486

RESUMEN

The time evolution of the total number of free electrons in the Earth's ionosphere, i.e., the Global Electron Content (GEC), during more than two solar cycles is analyzed in this work. The GEC time series has been extracted from the Global Ionospheric Maps (GIMs) of Vertical Total Electron Content (VTEC) estimated by UPC-IonSAT with TOMION-v1 software from global GPS measurements since the end of 1996. A dual-layer voxel-based tomographic model solved with a forward Kalman scalar filter, from dual-frequency carrier GPS data only, provides the so-called UQRG GIM after VTEC kriging interpolation, with a resolution of 15 min in time, 5° in longitude and 2.5° in latitude. UQRG is one of the best behaving GIMs in the International GNSS Service (IGS).In this context, the potential application of the GEC spectrum evolution as a potential space weather index is discussed and demonstrated.

13.
Talanta ; 270: 125501, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091749

RESUMEN

Biocatalytic processes play a crucial role in the valorization of lignin; therefore, methods enabling the monitoring of enzymes such as ß-etherases, capable of breaking ß-O-4 aryl-ether bonds, are of significant biotechnological interest. A novel method for quantifying ß-etherase activity was developed based on the ß-ester bond formation between a chromophore and acetovainillone. The chromogenic substrate ß-(ρ-nitrophenoxy)-α-acetovanillone (PNPAV), was chemically synthesized. Kintetic monitoring of ρ-nitrophenolate release at 410 nm over 10 min, using recombinant LigF from Sphingobium sp SYK-6, LigF-AB and LigE-AB from Althererytrobacter sp B11, yielded enzimatic activities of 404. 3 mU/mg, 72 mU/mg, and 50 mU/mg, respectively. This method is applicable in a pH range of 7.0-9.0, with a sensitivity of up to 50 ng of enzyme, exhibiting no interference with lipolytic, glycolytic, proteolytic, and oxidoreductase enzymes.


Asunto(s)
Compuestos Cromogénicos , Sphingomonadaceae , Oxidorreductasas/química , Proteínas Bacterianas/química , Lignina/química
14.
Environ Res ; 243: 117871, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38086499

RESUMEN

This work proposes a rigorous mathematical model capable of reproducing the adsorption process in dynamic regime on advanced monoliths geometries. For this, four bed geometries with axisymmetric distribution of channels and similar solid mass were proposed. In each geometry a different distribution of channels was suggested, maintaining constant the bed dimensions of 15 cm high and 5 cm radius. The mathematical modeling includes mass and momentum transfer phenomena, and it was solved with the COMSOL Multiphysics software using mass transfer parameters published in the literature. The overall performance of the column was evaluated in terms of breakthrough (CA/CA0 = 0.1) and saturation times (CA/CA0 = 0.9). The mass and velocity distributions obtained from the proposed model show good physical consistency with what is expected in real systems. In addition, the model proved to be easy to solve given the short convergence times required (2-4 h). Modifications were made to the bed geometry to achieve a better use of the adsorbent material which reached up to 80%. The proposed bed geometries allow obtaining different mixing distributions, in such a way that inside the bed a thinning of the boundary layer is caused, thus reducing diffusive effects at the adsorbent solid-fluid interface, given dissipation rates of about 323 × 10-11 m2/s3. The bed geometry composed of intersecting rings deployed the best performance in terms of usage of the material adsorbent, and acceptable hydrodynamical behavior inside the channels (maximum fluid velocity = 35.4 × 10-5 m/s and drop pressure = 0.19 Pa). Based on these results, it was found that it is possible to reduce diffusional effects and delimit the mass transfer zone inside the monoliths, thus increasing the efficiency of adsorbent fixed beds.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Modelos Teóricos , Matemática , Difusión
15.
PeerJ ; 11: e16417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144177

RESUMEN

Jellyfish are economically important organisms in diverse countries, carnivorous organisms that consume various prey (crustaceans, mollusks, bivalves, etc.) and dissolved carbohydrates in marine waters. This study was focused on detecting and quantifying the activity of digestive glycosidases from the cannonball jellyfish (Stomolophus sp. 2) to understand carbohydrate digestion and its temporal-spatial variation. Twenty-three jellyfish gastric pouches were collected in 2015 and 2016 in the Gulf of California in three localities (Las Guásimas, Hermosillo, and Caborca). Nine samples were in intra-localities from Las Guásimas. Chitinase (Ch), ß-glucosidase (ß-glu), and ß-N-acetylhexosaminidase (ß-NAHA) were detected in the gastric pouches. However, cellulase, exoglucanase, α-amylase, polygalacturonase, xylanase, and κ-carrageenase were undetected. Detected enzymes showed halotolerant glycolytic activity (i = 0-4 M NaCl), optimal pH, and temperature at 5.0 and 30-50 °C, respectively. At least five ß-glucosidase and two ß-N-acetylhexosaminidase were detected using zymograms; however, the number of proteins with chitinase activity is not precise. The annual variation of cannonball jellyfish digestive glycosidases from Las Guásimas between 2015-2016 does not show significant differences despite the difference in phytoplankton measured as chlorophyll α (1.9 and 3.4 mg/m3, respectively). In the inter-localities, the glycosidase activity was statistically different in all localities, except for ß-N-acetylhexosaminidase activity between Caborca and Hermosillo (3,009.08 ± 87.95 and 3,101.81 ± 281.11 mU/g of the gastric pouch, respectively), with chlorophyll α concentrations of 2.6, 3.4 mg/m3, respectively. For intra-localities, the glycosidase activity did not show significant differences, with a mean chlorophyll α of 1.3 ± 0.1 mg/m3. These results suggest that digestive glycosidases from Stomolophus sp. 2 can hydrolyze several carbohydrates that may belong to their prey or carbohydrates dissolved in marine waters, with salinity over ≥ 0.6 M NaCl and diverse temperature (4-80 °C) conditions. Also, chlorophyll α is related to glycosidase activity in both seasons and inter-localities, except for chitinase activity in an intra-locality (Las Guásimas).


Asunto(s)
Celulasas , Quitinasas , Escifozoos , Animales , Glicósido Hidrolasas , Cloruro de Sodio , Escifozoos/química , beta-N-Acetilhexosaminidasas , Carbohidratos , Clorofila
16.
Front Endocrinol (Lausanne) ; 14: 1235614, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107517

RESUMEN

Introduction: Pluripotent stem cells can be generated from somatic cells by the Yamanaka factors Oct4, Sox2, Klf4 and c-Myc. Methods: Mouse embryonic fibroblasts (MEFs) were transduced with the Yamanaka factors and generation of induced pluripotent stem cells (iPSCs) was assessed by formation of alkaline phosphatase positive colonies, pluripotency gene expression and embryod bodies formation. Results: The thyroid hormone triiodothyronine (T3) enhances MEFs reprogramming. T3-induced iPSCs resemble embryonic stem cells in terms of the expression profile and DNA methylation pattern of pluripotency genes, and of their potential for embryod body formation and differentiation into the three major germ layers. T3 induces reprogramming even though it increases expression of the cyclin kinase inhibitors p21 and p27, which are known to oppose acquisition of pluripotency. The actions of T3 on reprogramming are mainly mediated by the thyroid hormone receptor beta and T3 can enhance iPSC generation in the absence of c-Myc. The hormone cannot replace Oct4 on reprogramming, but in the presence of T3 is possible to obtain iPSCs, although with low efficiency, without exogenous Klf4. Furthermore, depletion of the corepressor NCoR (or Nuclear Receptor Corepressor 1) reduces MEFs reprogramming in the absence of the hormone and strongly decreases iPSC generation by T3 and also by 9cis-retinoic acid, a well-known inducer of reprogramming. NCoR depletion also markedly antagonizes induction of pluripotency gene expression by both ligands. Conclusions: Inclusion of T3 on reprogramming strategies has a potential use in enhancing the generation of functional iPSCs for studies of cell plasticity, disease and regenerative medicine.


Asunto(s)
Reprogramación Celular , Co-Represor 1 de Receptor Nuclear , Células Madre Pluripotentes , Animales , Ratones , Proteínas Co-Represoras/genética , Fibroblastos/metabolismo , Hormonas/metabolismo , Células Madre Pluripotentes/metabolismo , Hormonas Tiroideas/metabolismo , Co-Represor 1 de Receptor Nuclear/genética
17.
Eur J Radiol Open ; 11: 100538, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38028186

RESUMEN

Purpose: To investigate if clinical non-contrast chest CT studies obtained with PCD CT using much lower radiation exposure can achieve the same image quality as with the currently established EID protocol. Materials/methods: A total of seventy-one patients were identified who had a non-contrast chest computed tomography (CT) done on PCD CT and EID CT scanners within a 4-month interval. Five fellowship trained chest radiologists, blinded to the scanner details were asked to review the cases side-by-side and record their preference for images from either the photon-counting-detector (PCD) CT or the energy-integrating detector (EID) CT scanner. Results: The median CTDIvol for PCD-CT system was 4.710 mGy and EID system was 7.80 mGy (p < 0.001). The median DLP with the PCD-CT was 182.0 mGy.cm and EID system was 262.60 mGy.cm (p < 0.001). The contrast to noise ratio (CNR) was superior on the PCD-CT system 59.2 compared to the EID-CT 53.3; (p < 0.001). Kappa-statistic showed that there was poor agreement between the readers over the image quality from the PCD and EID scanners (κ = 0.19; 95 % CI: 0.12 - 0.27; p < 0.001). Chi-square analysis revealed that 3 out of 5 readers showed a significant preference for images from the PCDCT (p ≤ 0.012). There was no significant difference in the preferences of two readers between EID-CT and PCD-CT images. Conclusion: The first clinical PCD-CT system allows a significant reduction in radiation exposure while maintaining image quality and image noise using a standardized non-contrast chest CT protocol.

18.
Environ Res ; 238(Pt 2): 117196, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778603

RESUMEN

Chlorpheniramine (CPM) and Ciprofloxacin (CIP) adsorption onto a granular (GAC) and pelletized activated carbon (PAC) analyzing the physicochemical mechanisms involved using the carbon's characterization were studied. Adsorption isotherm studies were performed at temperatures of 25 °C at pH values of 4, 7 and 9 and at 45 °C at a pH of 7. The characterization demonstrated that GAC has a predominantly acid character due to its predominantly negative surface charge and acidic site concentration alongside the characteristic bands detected in the X-ray Photoemission Spectroscopy (XPS) study. On the other hand, PAC presented a mostly basic character due to its positive surface charge and basic site concentrations. The adsorption isotherm studies demonstrated that the Freundlich isotherm better described the equilibrium data with an average deviation percentage of 7.45 and 6.74 for GAC and PAC. The temperature and desorption studies demonstrated that the adsorption process occurs through a chemisorption mechanism, and the pH study alongside the GAC and PAC characterization demonstrated that the mechanisms involved are a combination of electrostatic interactions and pi-pi interactions between the CPM and CIP molecules and the carbon's surface. These results demonstrate that the adsorption process of these pharmaceutical compounds is done through a combination of physical and chemical interactions.


Asunto(s)
Ciprofloxacina , Contaminantes Químicos del Agua , Ciprofloxacina/química , Carbón Orgánico/química , Clorfeniramina , Contaminantes Químicos del Agua/química , Cinética , Adsorción
19.
Carbohydr Polym ; 321: 121333, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739546

RESUMEN

Halophilic archaea are capable of producing fructans, which are fructose-based polysaccharides. However, their biochemical characterization and biological and technological properties have been scarcely studied. The aim of this study was to evaluate the production, chemical characterization, biological and technological properties of a fructan inulin-type biosynthesized by a halophilic archaeon. Fructan extraction was performed through ethanol precipitation and purification by diafiltration. The chemical structure was elucidated using Fourier Transform-Infrared Spectroscopy and Nuclear Magnetic Resonance (NMR). Haloarcula sp. M1 biosynthesizes inulin with an average molecular weight of 8.37 × 106 Da. The maximal production reached 3.9 g of inulin per liter of culture within seven days. The glass transition temperature of inulin was measured at 138.85 °C, and it exhibited an emulsifying index of 36.47 %, which is higher than that of inulin derived from chicory. Inulin from Haloarcula sp. M1 (InuH) demonstrates prebiotic capacity. This study represents the first report on the biological and technological properties of inulin derived from halophilic archaea.


Asunto(s)
Haloarcula , Inulina , Fructanos , Etanol
20.
Artículo en Inglés | MEDLINE | ID: mdl-37704815

RESUMEN

In the present research, the presence of water hyacinth (Eichhornia crassipes) on the surface of the San Jose Dam located in the city of San Luis Potosi, S.L.P, Mexico, was monitored and mapped. The monitoring was conducted for 2 years (2018-2020) with remote sensing data from OLI Landsat 8 sensors, based on the normalized difference vegetation index (NDVI). The results demonstrated the capability and accuracy of this method, where it was observed that the aboveground cover area, proliferation, and distribution of water hyacinth are influenced by climatic and anthropogenic factors during the four seasons of the year. As part of a sustainable environmental control of this invasive species, the use of water hyacinth (WH) root (RO), stem (ST), and leaf (LE) components as adsorbent material for Pb(II) present in aqueous solution was proposed. The maximum adsorption capacity was observed at pH 5 and 25 °C and was 107.3, 136.8, and 120.8 mg g-1 for RO, ST, and LE, respectively. The physicochemical characterization of WH consisted of scanning electron microscopy (SEM), N2 physisorption, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), charge distribution, and zero charge point (pHPZC). Due to the chemical nature of WH, several Pb(II) adsorption mechanisms were proposed such as electrostatic attractions, ion exchange, microprecipitation, and π-cation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...